DsecOS Enterprise
Qiskit Simulation Environment for Quantum Computing Tests
Harness Quantum Algorithms in a Classical, Isolated Environment
Secure R&D
Cost-Effective
Scalable
Export Controlled
2
Platform Overview
A secure platform for a Qiskit-based quantum simulation environment, enabling developers and researchers to test quantum circuits, algorithms (e.g., Shor's, Grover's), and error mitigation strategies without access to physical quantum hardware. Qiskit, IBM's open-source quantum SDK, runs in a hardened containerized setup, simulating noisy quantum systems for deployment validation.
Cost Savings
$10K/hr
Vs. quantum cloud
Qubit Simulation
100+
On classical hardware
Deployment Time
<10 min
Per node
IP Protection
100%
SELinux confined
Business Value
- Cost-Effective Testing: Simulate 100+ qubits on classical hardware vs. $10K/hour quantum cloud access
- Secure Development: SELinux confines simulations to prevent IP leakage
- Scalability: Parallelize simulations across Ceph-distributed storage
- Integration Ready: Export results to real quantum providers (e.g., IBM Quantum) via API
⚡ Ideal For: Quantum computing R&D teams in pharmaceuticals (drug discovery), finance (portfolio optimization), or logistics (routing optimization)
3
Technical Foundation
| Component |
Role |
Security Features |
| Qiskit + Aer Simulator |
Circuit design, noise modeling, up to 32-qubit simulations |
Rootless Python env, AppArmor, seccomp filters |
| JupyterLab Interface |
Interactive notebook for algorithm testing |
JWT auth, rate-limited access, encrypted sessions |
| PostgreSQL Backend |
Store circuit results, error rates |
LUKS-encrypted, row-level security for proprietary data |
| AI Optimizer |
Auto-tune error mitigation (e.g., dynamical decoupling) |
ML models trained on simulation logs |
Platform Security
- Kernel Security: SELinux policies for qiskit_t domain, restricting simulator access
- Resource Isolation: LXC containers with dedicated vCPUs/GPUs for parallel Aer simulations
- Storage: Ceph for distributed quantum state vectors (up to 2^50 amplitudes)
- Networking: Zero-trust SDN isolates simulation traffic from classical apps
4
Cluster Architecture
5-Node Cluster (On-Prem Lab or Hybrid with AWS)
graph TD
subgraph "DsecOS Enterprise Cluster (5 Nodes)"
N1[DsecOS Node 1
Master + Ceph MON]
N2[DsecOS Node 2
Qiskit Simulator + GPU]
N3[DsecOS Node 3
JupyterLab Gateway]
N4[DsecOS Node 4
Worker + Ceph OSD]
N5[DsecOS Node 5
AI Optimizer + Ceph OSD]
end
subgraph "Quantum Simulation Layer"
QIS["Qiskit Core
(Circuit Builder)"]
AER["Aer Simulator
(Noisy Backend)"]
JUP["JupyterLab
(Interactive Notebooks)"]
end
subgraph "Data & Security"
DB["PostgreSQL
(Results + Logs)"]
AI["AI Error Mitigator
(Scikit + Qiskit)"]
LIC[License Server
Enterprise JWT]
end
N1 <-->|Corosync HA| N2
N2 <--> N3
N3 <--> N4
N4 <--> N5
N1 --> CEPH[Ceph Cluster
Distributed State Storage]
QIS --> N2
AER --> N2
JUP --> N3
DB --> N4
AI --> N5
CEPH --> QIS
CEPH --> DB
CEPH --> AI
AI --> QIS
LIC --> N1
style N1 fill:#121212,stroke:#9370db,color:#FFF
style QIS fill:#1E1E1E,stroke:#9370db,color:#FFF
style AI fill:#8B0000,color:#FFF
5
Simulation Deployment Flow
journey
title Qiskit Simulation Deployment Flow
section Provisioning
Activate Enterprise License: 5: Quantum Researcher
PXE Deploy 5 Nodes: 5: DevOps
Configure GPU Passthrough: 4: Auto-Via Ansible
section Development
Launch JupyterLab: 5: React UI
Design Grover's Circuit: 5: Notebook
Run 28-Qubit Simulation: 4: Aer Backend
section Testing
Apply Noise Model: 5: One-Click
Analyze Error Rates: 4: AI Insights
Export to IBM Quantum: 3: API Call
section Optimization
Auto-Mitigate Errors: 3: ML-Driven
Scale to 5 Nodes: 4: Load Balancer
Generate Compliance Log: 5: Audit Export
6
Deployment Requirements
⚡ Prerequisites: DsecOS Enterprise license (quantum edition add-on), 5x servers (64 GB RAM, NVIDIA A100 GPUs, 2 TB SSD), high-bandwidth LAN
Step 1: Provision Nodes
# On provisioning server
/scripts/pxe-deploy.sh --cluster quantum-sim --nodes 5 --gpu-passthrough
Step 2: Activate License
In Web UI: Settings > License → Enter key. Enable quantum features (GPU isolation, large memory pools).
Step 3: Deploy Custom Stack
Create /templates/stacks/qiskit-sim.yml:
version: '3.8'
services:
qiskit:
image: mcr.microsoft.com/quantum/qiskit:latest
working_dir: /workspace
volumes:
- ceph-quantum:/workspace
- /dev/nvidia0:/dev/nvidia0
environment:
- QISKIT_SIMULATOR=AerSimulator
- CUDA_VISIBLE_DEVICES=0
command: jupyter lab --ip=0.0.0.0 --allow-root --no-browser
ports:
- "8888:8888"
depends_on:
- db
db:
image: postgres:16-alpine
environment:
POSTGRES_DB: qiskit_results
POSTGRES_PASSWORD: quantum_secure
volumes:
- ceph-db:/var/lib/postgresql/data
ai-optimizer:
image: python:3.12-slim
volumes:
- ceph-ai:/models
command: python /app/optimize_errors.py
depends_on:
- qiskit
volumes:
ceph-quantum:
driver: cephfs
ceph-db:
driver: cephfs
ceph-ai:
driver: cephfs
Deploy Command
dsecos deploy qiskit-sim
7
Run a Sample Simulation
In JupyterLab (http://your-ip:8888):
from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
# Grover's search on 3 qubits
qc = QuantumCircuit(3, 3)
qc.h([0, 1, 2]) # Superposition
qc.cz(0, 1) # Oracle
qc.measure([0,1,2], [0,1,2])
simulator = Aer.get_backend('aer_simulator')
result = execute(qc, simulator, shots=1024).result()
counts = result.get_counts(qc)
plot_histogram(counts)
Results
- Results Stored: In PostgreSQL with full audit trail
- AI Analysis: Analyzes for fidelity >95%
- Export Ready: Integration with IBM Quantum via secure API
8
Security & Compliance
Algorithm Protection
SELinux
Prevents exfiltration
Error Analysis
97%
AI detection accuracy
Compliance
NIST
Quantum-safe crypto
Export Control
100%
Sensitive algorithms
Security Features
- Algorithm Protection: SELinux prevents exfiltration of quantum circuits
- Error Analysis: AI detects simulation biases with 97% accuracy
- Compliance: Logs for NIST quantum-safe crypto audits
- Export Controls: Compliance with regulations on sensitive algorithms
9
Performance Metrics
| Metric |
Value |
| Qubit Simulation (28-qubit) |
45 seconds (GPU) |
| Memory Usage (50-qubit) |
128 GB (distributed Ceph) |
| Error Mitigation Speed |
<10 seconds per circuit |
| Fidelity Improvement |
+15% via dynamical decoupling |
10
Return on Investment
Quantum R&D Lab Example (500 Simulations/Month)
| Category |
Current Costs |
With DsecOS |
Savings |
| Annual Operating Costs |
$200,000 |
$50,000 |
$150,000 |
| Iteration Speed |
Baseline |
5x faster |
Accelerated |
Total Annual Savings
$150,000+
Plus 5x faster iteration
Simulating the Quantum Future, Secured in the Classical World
"Harness Quantum Algorithms in a Classical, Isolated Environment"
SECURE
SCALABLE
COST-EFFECTIVE
EXPORT CONTROLLED
DsecOS Enterprise Quantum Edition